解析:如图所示,在△AFB中,|AB|=10,|BF|=8,cos ∠ABF=,
由余弦定理得|AF|2=|AB|2+|BF|2-2|AB||BF|
cos ∠ABF=100+64-2×10×8×=36,
所以|AF|=6,∠BFA=90°,
设F′为椭圆的右焦点,连接BF′,AF′.
根据对称性可得四边形AFBF′是矩形.
所以|BF′|=6,|FF′|=10,所以2a=8+6,2c=10,
解得a=7,c=5,所以e==.
答案:B
4.(2019·长郡中学模拟)已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,若点F2关于双曲线渐近线的对称点A满足∠F1AO=∠AOF1(O为坐标原点),则双曲线的渐近线方程为( )
A.y=±x B.y=±2x
C.y=±x D.y=±x
解析:设F2A与渐近线y=x交于点M,且O,M分别为F1F2