2018-2019学年北师大版必修四 两角和与差的正切函数 课时作业
2018-2019学年北师大版必修四     两角和与差的正切函数  课时作业第2页

答案3/2

7.tan 23°+tan 37°+√3tan 23°tan 37°的值是     .

解析∵tan 60°=√3=(tan23"°" +tan37"°" )/(1"-" tan23"°" tan37"°" ),

  ∴tan 23°+tan 37°=√3-√3tan 23°tan 37°,

  ∴tan 23°+tan 37°+√3tan 23°tan 37°=√3.

答案√3

8.已知α∈(0"," π/2),且tan(α+π/4)=3,则log5(sin α+2cos α)+log5(3sin α+cos α)=.

解析利用两角和的正切公式得

  tan(α+π/4)=(tanα+1)/(1"-" tanα)=3,

  ∴tan α=1/2.

  ∴log5(sin α+2cos α)+log5(3sin α+cos α)

  =log5(3sin^2 α+7sinαcosα+2cos^2 α)/(sin^2 α+cos^2 α)

  =log5(3tan^2 α+7tanα+2)/(tan^2 α+1)=log55=1.

答案1

9.导学号93774095已知tan α=3.

(1)求tan(α"-" π/4)的值;

(2)求(sinα+cosα)/(sinα"-" 2cosα)的值.

解(1)tan(α"-" π/4)=(tanα"-" tan π/4)/(1+tanα"·" tan π/4)=(3"-" 1)/(1+3×1)=1/2.

  (2)由tan α=3,得cos α≠0,

  所以(sinα+cosα)/(sinα"-" 2cosα)=(tanα+1)/(tanα"-" 2)=(3+1)/(3"-" 2)=4.

10.导学号93774096已知tan α=-1/3,cos β=√5/5,α,β∈(0,π).

(1)求tan(α+β)的值;

(2)求函数f(x)=√2sin(x-α)+cos(x+β)的最大值.

解(1)∵cos β=√5/5,β∈(0,π),∴sin β=(2√5)/5,

  ∴tan β=2,

  ∴tan(α+β)=(tanα+tanβ)/(1"-" tanαtanβ)=("-" 1/3+2)/(1"-" ("-" 1/3)×2)=1.

  (2)∵tan α=-1/3,α∈(0,π),

  ∴sin α=√10/10,cos α=-(3√10)/10,

  ∴f(x)=√2(sin xcos α-cos xsin α)+(cos xcos β-sin xsin β)

  =-(3√5)/5sin x-√5/5cos x+√5/5cos x-(2√5)/5sin x

  =-√5sin x.

  又-1≤sin x≤1,

  ∴f(x)的最大值为√5.

11.在△ABC中,求证:tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1.

证明左边=tanA/2 (tan B/2+tan C/2)+tanB/2tanC/2

  =tanA/2tan(B+C)/2 (1"-" tan B/2 tan C/2)+tanB/2tanC/2

  =tanA/2tan(π/2 "-" A/2)(1"-" tan B/2 tan C/2)+tanB/2·tanC/2

  =tanA/2 1/(tan A/2) (1"-" tan B/2 tan C/2)+tanB/2tanC/2

=1=右边.