答案3/2
7.tan 23°+tan 37°+√3tan 23°tan 37°的值是 .
解析∵tan 60°=√3=(tan23"°" +tan37"°" )/(1"-" tan23"°" tan37"°" ),
∴tan 23°+tan 37°=√3-√3tan 23°tan 37°,
∴tan 23°+tan 37°+√3tan 23°tan 37°=√3.
答案√3
8.已知α∈(0"," π/2),且tan(α+π/4)=3,则log5(sin α+2cos α)+log5(3sin α+cos α)=.
解析利用两角和的正切公式得
tan(α+π/4)=(tanα+1)/(1"-" tanα)=3,
∴tan α=1/2.
∴log5(sin α+2cos α)+log5(3sin α+cos α)
=log5(3sin^2 α+7sinαcosα+2cos^2 α)/(sin^2 α+cos^2 α)
=log5(3tan^2 α+7tanα+2)/(tan^2 α+1)=log55=1.
答案1
9.导学号93774095已知tan α=3.
(1)求tan(α"-" π/4)的值;
(2)求(sinα+cosα)/(sinα"-" 2cosα)的值.
解(1)tan(α"-" π/4)=(tanα"-" tan π/4)/(1+tanα"·" tan π/4)=(3"-" 1)/(1+3×1)=1/2.
(2)由tan α=3,得cos α≠0,
所以(sinα+cosα)/(sinα"-" 2cosα)=(tanα+1)/(tanα"-" 2)=(3+1)/(3"-" 2)=4.
10.导学号93774096已知tan α=-1/3,cos β=√5/5,α,β∈(0,π).
(1)求tan(α+β)的值;
(2)求函数f(x)=√2sin(x-α)+cos(x+β)的最大值.
解(1)∵cos β=√5/5,β∈(0,π),∴sin β=(2√5)/5,
∴tan β=2,
∴tan(α+β)=(tanα+tanβ)/(1"-" tanαtanβ)=("-" 1/3+2)/(1"-" ("-" 1/3)×2)=1.
(2)∵tan α=-1/3,α∈(0,π),
∴sin α=√10/10,cos α=-(3√10)/10,
∴f(x)=√2(sin xcos α-cos xsin α)+(cos xcos β-sin xsin β)
=-(3√5)/5sin x-√5/5cos x+√5/5cos x-(2√5)/5sin x
=-√5sin x.
又-1≤sin x≤1,
∴f(x)的最大值为√5.
11.在△ABC中,求证:tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1.
证明左边=tanA/2 (tan B/2+tan C/2)+tanB/2tanC/2
=tanA/2tan(B+C)/2 (1"-" tan B/2 tan C/2)+tanB/2tanC/2
=tanA/2tan(π/2 "-" A/2)(1"-" tan B/2 tan C/2)+tanB/2·tanC/2
=tanA/2 1/(tan A/2) (1"-" tan B/2 tan C/2)+tanB/2tanC/2
=1=右边.