有6种选法;第三类,从高三年级选一人,有4种选法.由分类加法计数原理得,共有5+6+4=15种选法.
(2)分三步完成:第一步,从高一年级选一人,有5种选法;第二步,从高二年级选一人,有6种选法;第三步,从高三年级选一人,有4种选法.由分步乘法计数原理得,共有5×6×4=120种选法.
(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法.由分类加法计数原理得,共有30+20+24=74种选法.
[B组 能力提升]
1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )
A.14 B.13
C.12 D.10
解析:当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.
答案:B
2.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A、B的值,则形成的不同直线有( )
A.18条 B.20条
C.25条 D.10条
解析:第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.
答案:A
3.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,则有________种不同的着色方案.
操场 宿舍区 餐厅 教学区
解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的4种颜色中任选1种着色;教学区和宿舍区