人教版八年级上册数学《全册期末复习提纲》免费下载11
人教版八年级上册数学《全册期末复习提纲》免费下载11第4页

2.弄清因式分解与整式乘法的内在的关系

    因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式。

3.熟练掌握因式分解的常用方法.

(1)提公因式法

①提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:A系数--各项系数的最大公约数;

  B字母--各项含有的相同字母;C指数--相同字母的最低次数。

②提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

③注意点:A提取公因式后各因式应该是最简形式,即分解到"底";

     B如果多项式的第一项的系数是负的,一般要提出"-"号,使括号内的第一项的系数是正的。

(2)公式法(运用公式法分解因式的实质是把整式中的乘法公式反过来使用)

①平方差公式:

②完全平方公式:

(3)十字相乘法:

4.添括号时,如果括号前面是正号,括号里的各项都不变符号;如果括号前面时负号,括号里的各项都改变符号.

    第十五章 分式

1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

                            ()

3.分式的通分和约分:关键先是分解因式

4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

   分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

   

   分式乘方法则: 分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减

   混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即;当n为正整数时, (

6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)

   

(1)同底数的幂的乘法:;(2)幂的乘方:;(3)积的乘方:;

(4)同底数的幂的除法:( a≠0);(5)商的乘方:();(b≠0)

   

7. 分式方程:含分式,并且分母中含未知数的方程--分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.

 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.

应用题有几种类型;基本公式是什么?

基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.