(2)∵y=x-sin cos =x-sin x,∴y′=x′-′=1-cos x.
10.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,
并求此定值.
(1)解 由7x-4y-12=0得y=x-3.
当x=2时,y=,∴f(2)=, ①
又f′(x)=a+,∴f′(2)=, ②
由①,②得解之得.故f(x)=x-.
(2)证明 设P(x0,y0)为曲线上任一点,由y′=1+知
曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),
即y-=(x-x0).
令x=0得y=-,从而得切线与直线x=0的交点坐标为.
令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).
所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为=6.
故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.