2018-2019学年人教A版选修2-1 3.1.3 空间向量的数量积运算 课时作业
2018-2019学年人教A版选修2-1    3.1.3 空间向量的数量积运算      课时作业第2页

  A.45° B.60°

  C.90° D.120°

  解析:选B.令\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c,则|a|=|b|=|c|=m(m>0),a·b=b·c=c·a=0,\s\up6(→(→)=(c-a),\s\up6(→(→)=b+c,又|\s\up6(→(→)|=m,|\s\up6(→(→)|=m,所以cos〈\s\up6(→(→),\s\up6(→(→)〉=\s\up6(→(EF,\s\up6(→)==,所以直线EF和BC1所成的角为60°.

  6.化简(\s\up6(→(→)-\s\up6(→(→))-(\s\up6(→(→)-\s\up6(→(→))= .

  解析:法一:(利用相反向量的关系转化为加法运算)

  (\s\up6(→(→)-\s\up6(→(→))-(\s\up6(→(→)-\s\up6(→(→))=\s\up6(→(→)-\s\up6(→(→)-\s\up6(→(→)+\s\up6(→(→)

  =\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)=0.

  法二:(利用向量的减法运算法则求解)

  (\s\up6(→(→)-\s\up6(→(→))-(\s\up6(→(→)-\s\up6(→(→))=(\s\up6(→(→)-\s\up6(→(→))+\s\up6(→(→)-\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)-\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=0.

  答案:0

  7.设e1,e2是空间两个不共线的向量,若\s\up6(→(→)=e1+ke2,\s\up6(→(→)=5e1+4e2,\s\up6(→(→)=-e1-2e2,且A,B,D三点共线,则实数k= .

  解析:\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=6(e1+e2),因为A、B、D三点共线,可令\s\up6(→(→)=λ\s\up6(→(→),即e1+ke2=6λ(e1+e2),又e1,e2不共线,故有,所以k=1.

  答案:1

  8.如图,已知四棱柱ABCD­A1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E为棱C1D1的中点,则\s\up6(→(→)·\s\up6(→(→)= .

  

  解析:\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→),

  \s\up6(→(→)·\s\up6(→(→)=\s\up6(→(→)·\s\up6(→(→)+\s\up6(→(→)·\s\up6(→(→)+\s\up6(→(→)2=4×3×cos 60°+0+×42=14.

  答案:14

  9.如图所示,已知平行六面体ABCD- A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°.求证:CC1⊥BD.

  证明:设\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c,

  则|a|=|b|.

  因为\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=b-a,

所以\s\up6(→(→)·\s\up6(→(→)=(b-a)·c=b·c-a·c=|b c|cos 60°-|a c|cos 60°=0,所以\s\up6(→(→)⊥\s\up6(→(→),即CC