=381,解得a1=192.
【答案】 C
4.设数列1,(1+2),...,(1+2+22+...+2n-1),...的前n项和为Sn,则Sn的值为( )
A.2n B.2n-n
C.2n+1-n D.2n+1-n-2
【解析】 法一:特殊值法,由原数列知S1=1,S2=4,在选项中,满足S1=1,S2=4的只有答案D.
法二:看通项,an=1+2+22+...+2n-1=2n-1.
∴Sn=-n=2n+1-n-2.
【答案】 D
5.已知数列{an}为等比数列,Sn是它的前n项和,若a2·a3=2a1,且a4与2a7的等差中项为,则S5=( )
A.35 B.33
C.31 D.29
【解析】 设数列{an}的公比为q,
∵a2·a3=a·q3=a1·a4=2a1,∴a4=2.
又∵a4+2a7=a4+2a4q3=2+4q3=2×,
∴q=.
∴a1==16,S5==31.
【答案】 C
二、填空题
6.已知等比数列{an}的前n项和Sn=x·2n-1,则x=________.