2018-2019学年人教A版必修2 3.2.2 直线的两点式方程 作业
2018-2019学年人教A版必修2 3.2.2 直线的两点式方程 作业第3页

法二:设直线l的截距式方程为+=1,

因为直线l过点(6,-2),

所以+=1,

解得b1=1,b2=2.

所以直线l的方程为+y=1或+=1.

10.已知△ABC中A(-8,2),AB边上中线CE所在的直线方程为x+2y-5=0,AC边上中线BD所在的直线方程为2x-5y+8=0,求直线BC的方程.

解:如图所示.

设B(x1,y1),则E,

因为点B在直线BD上,点E在直线CE上,

故可得方程组解得

从而B(6,4).

设C(x2,y2),则D,

同理可得方程组

解得从而C(5,0).

故有直线BC的方程是4x-y-20=0.

[B 能力提升]

11.过点(-2,0)且在两坐标轴上的截距之差为3的直线方程是(  )

A.+y=1

B.+=1

C.+=1