A. B. C. D.
解析:原式=sin(45°-30°)·sin(45°+30°)
=(sin45°cos30°-cos45°sin30)(sin45°cos30°+cos45°sin30°)=.
故选择C.
答案:C
5.sin163°sin223°+sin253°sin313°等于( )
A.- B. C. D.
解析:原式=sin(180°-17°)sin(180°+43°)+sin(180°+73°)·sin(360°-47°)
=-sin17°sin43°+sin73°sin47°
=-sin17°sin43°+cos17°cos43°
=cos60°=.
∴选B.
答案:B
6.若3sinx-cosx=2sin(x+φ),φ∈(-π,π),则φ等于( )
A.- B. C.π D.-π
解析:∵3sinx-cosx=2(sinx-cosx)
=2(sinxcos-cosxsin)
=2sin(x-),
∴2sin(x-)=2sin(x+φ).
又∵φ∈(-π,π),∴φ=-.
故选择A.
答案:A
7.已知cosθ=-,θ∈(,π),则sin(θ+)=________________.
解析:∵cosθ=-,θ∈(,π),
∴sinθ=.