(1)求角A;
(2)若(AB" " ) ⃗" "·" " (AC" " ) ⃗=3,求a的最小值.
18.已知圆C" ":" " x^2+y^2+2x-4y+3=0.
(1)若直线l过点(-2" "," " 0)且被圆C截得的弦长为2,求直线l的方程;
(2)从圆C外一点P向圆C引一条切线,切点为M" "," " O为坐标原点,满足|" " PM" "|=|" " PO" "|,求点P的轨迹方程及|" " PM" "|的最小值.
19.设数列{a_n}的前n项和为S_n,且1" "," " a_n " "," " S_n成等差数列,n∈N^*.
(1)求数列{a_n}的通项公式;
(2)若1/(a_1+a_2 )+1/(a_2+a_3 )+⋯+1/(a_n+a_(n+1) )=(f(n))/(a_(n+1)^2 ),当f(n)=8时,求n.
20.已知椭圆x^2/a^2 +y^2/b^2 =1" "(a>b>0)右焦点F(1" "," " 0),离心率为√2/2,过F作两条互相垂直的弦AB" "," " CD,设AB" "," " CD中点分别为M" "," " N.
(1)求椭圆的标准方程;
(2)证明:直线MN必过定点,并求出此定点坐标.
21.已知函数f(x)=1/2 x^2+alnx;
(1)当a<0时,∃x>0,使f(x)⩽0成立,求a的取值范围;
(2)令g(x)=f(x)-(a+1)x" "," " a∈(1" "," e"],证明:对∀x_1 " "," " x_2∈[1" "," " a],恒有|" " g(x_1)-g(x_2)" "|<1.
22.已知直线l的参数方程为{█(x=√10/2+tcosα@y=tsinα) (t为参数),在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线M的方程为ρ^2 (1+sin^2 θ)=1.
(1)求曲线M的直角坐标方程;
(2)若直线l与曲线M只有一个公共点,求倾斜角α的值.
23.已知函数f(x)=|" " x-a" "|+|" " x-3" "|.
(1)若f(x)的最小值为4,求a的值;
(2)当x∈[2" "," " 4]时,f(x)