7已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为 .
解析:由已知可设P(4,y1),Q(-2,y2).
∵点P,Q在抛物线x2=2y上,
∴{■(4^2=2y_1 "," @"(-" 2")" ^2=2y_2 "," )┤解得{■(y_1=8"," @y_2=2"," )┤
∴P(4,8),Q(-2,2),如图.
又抛物线方程可化为y=1/2 x2,
∴由导数的定义,得y'=x,
∴过点P的切线斜率为4.
∴过点P的切线方程为y-8=4(x-4),即y=4x-8.
又过点Q的切线斜率为-2,
∴过点Q的切线方程为y-2=-2(x+2),
即y=-2x-2.
联立{■(y=4x"-" 8"," @y="-" 2x"-" 2"," )┤得x=1,y=-4,
∴点A的纵坐标为-4.
答案:-4
8若抛物线y=x2-x+c上一点P的横坐标是-2,抛物线过点P的切线恰好过坐标原点,则c的值为 .