∴x+x-4x+4=0,
∴x(x0+1)-4(x0+1)(x0-1)=0,
∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,
故所求的切线方程为x-y+2=0或4x-y-4=0.
8.已知点M是曲线y=x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:
(1)斜率最小的切线方程;
(2)切线l的倾斜角α的取值范围.
[解] (1)y′=x2-4x+3=(x-2)2-1≥-1,
所以当x=2时,y′=-1,y=,
所以斜率最小的切线过点,
斜率k=-1,
所以切线方程为x+y-=0.
(2)由(1)得k≥-1,
所以tan α≥-1,所以α∈∪.
B组 能力提升
1.(2019·青岛模拟)若函数y=f(x)的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y=f(x)具有T性质,下列函数中具有T性质的是( )
A.y=sin x B.y=ln x
C.y=ex D.y=x3
A [若y=f(x)的图像上存在两点(x1,f(x1)),(x2,f(x2)),使得函数图像在这两点处的切线互相垂直,则f′(x1)·f′(x2)=-1.
对于A:y′=cos x,若有cos x1·cos x2=-1,则当x1=2kπ,x2=2kπ+π(k∈Z)时,结论成立;
对于B:y′=,若有·=-1,即x1x2=-1,∵x>0,∴不存在x1,x2,使得x1x2=-1;
对于C:y′=ex,若有ex1·ex2=-1,即ex1+x2=-1.显然不存在这样的x1,x2;
对于D:y′=3x2,若有3x·3x=-1,即9xx=-1,显然不存在这样的x1,x2.
综上所述,选A.]
2.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )