曲线与y轴围成的图形的面积.
[解] 由x=,得x2+y2=4.
又x≥0,
∴方程x=表示的曲线是以原点为圆心,2为半径的右半圆.
从而该曲线C与y轴围成的图形是半圆,
其面积S=π·4=2π.
所以,所求图形的面积为2π.
10.证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k.
[证明] ①如图,设M(x0,y0)是轨迹上的任意一点.
因为点M与x轴的距离为|y0|,与y轴的距离为|x0|,所以|x0|·|y0|=k,
即(x0,y0)是方程xy=±k的解.
②设点M1的坐标(x1,y1)是方程xy=±k的解,则x1y1=±k,即|x1|·|y1|=k.
而|x1|,|y1|正是点M1到纵轴、横轴的距离,因此点M1到这两条直线的距离的积是常数k,点M1是曲线上的点.由①②可知,xy=±k是与两条坐标轴的距离的积为常数k(k>0)的点的轨迹方程.
[能力提升练]
1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)( )
A.在直线l上,但不在曲线C上
B.在直线l上,也在曲线C上
C.不在直线l上,也不在曲线C上
D.不在直线l上,但在曲线C上
B [将点代入x+y-3=0,满足方程;代入(x-3)2+(y-2)2=2也满足方程,故点M在直线l上,也在曲线C上.]
2.下列说法正确的是________.(填序号)
已知f(x,y)=0是曲线C的方程.