5点P(1,0)到曲线{■(x=t^2 "," @y=2t)┤(参数t∈R)上的点的最短距离为( )
A.0 B.1 C.√2 D.2
解析设曲线{■(x=t^2 "," @y=2t)┤上的任意一点的坐标为(t2,2t),则d2=(t2-1)2+4t2=(t2+1)2.∵t∈R,∴d_min^2=1,∴dmin=1.
答案B
6抛物线y=ax2(a>0)的参数方程可以表示为( )
A.{■(x=1/√a t"," @y=t^2 )┤(t为参数)
B.{■(x=at"," @y=t^2 )┤(t为参数)
C.{■(x=at^2 "," @y=t)┤(t为参数)
D.{■(x=1/√a t^2 "," @y=t)┤(t为参数)
解析按照参数方程与普通方程的互化原则,消去参数t即可,只有选项A符合条件.
答案A
7将方程{■(x=tant"," @y=(1"-" cos2t)/(1+cos2t))┤化为普通方程是 .
解析由y=(1"-" cos2t)/(1+cos2t)=(2sin^2 t)/(2cos^2 t)=tan2t,将tant=x代入上式,得y=x2,故所求的普通方程为y=x2.
答案y=x2
8已知实数x,y满足 x^2/16+y^2/9=1,则z=x-y的最大值为 ,最小值为 .
解析由椭圆的参数方程,可设x=4cosθ,y=3sinθ(θ为参数),
所以z=x-y=4cosθ-3sinθ=5cos(θ+φ),其中φ为锐角,且tanφ=3/4.所以-5≤z≤5.
答案5 -5
9抛物线y=x2-2x/t 的顶点的轨迹的普通方程为 .
解析抛物线方程可化为y=(x"-" 1/t)^2-1/t^2 ,所以其顶点坐标为(1/t ",-" 1/t^2 ).记M(x,y)为所求轨迹上任意一点,则{■(x=1/t "," @y="-" 1/t^2 "," )┤消去t得y=-x2(x≠0).
答案y=-x2(x≠0)