1.【解析】 P==.
【答案】 D
2.【解析】 欲使f(x)=log2x≥0,则x≥1,而x∈,∴x0∈[1,2],
由几何概型概率公式知P==.
【答案】 C
3.【解析】 由题意AB=2,BC=1,可知长方形ABCD的面积S=2×1=2,以AB为直径的半圆的面积S1=×π×12=.故质点落在以AB为直径的半圆内的概率P==.
【答案】 B
4.【解析】 如图,当取点落在B、C两点时,弦长等于半径;当取点落在劣弧上时,弦长小于半径;当取点落在优弧上时,弦长大于半径,
所以弦长超过半径的概率P==.
【答案】 B
5.【解析】 设在[0,1]内取出的数为a,b,若a2+b2也在[0,1]内,则有0≤a2+b2≤1.如图,试验的全部结果所构成的区域为边长为1的正方形,满足a2+b2在[0,1]内的点在单位圆内(如阴影部分所示),故所求概率为=.
【答案】 A
6.【解析】 由f(x0)≤0得x0-2≤0,x0≤2,又x0∈[-5,5],∴x0∈[-5,2].
设使f(x0)≤0为事件A,则事件A构成的区域长度是2-(-5)=7,全部结果构成的区域长度是5-(-5)=10,则P(A)=.
【答案】
7.【解析】 如图所示,从点A出发的弦中,当弦的另一个端点落在劣弧上的时候,满足已知条件,当弦的另一个端点在劣弧或劣弧上的时候不能满足已知条件,又因为△ABC是正三角形,所以弦长大于正三角形边长的概率是.
【答案】
8.【解析】 若函数f(x)=-x2+mx+m-的图象与x轴有公共点,则Δ=m2+4≥0