究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
21.(本题满分12分)已知函数是定义在上的奇函数.
(1)求的值;
(2)判断函数的单调性,并用定义证明;
(3)当时,恒成立,求实数的取值范围.
22.(本小题满分12分)已知函数的定义域为D,且同时满足以下条件:
①在D上是单调递增或单调递减函数;
②存在闭区间D(其中),使得当时,的取值集合也是.那么,我们称函数 ()是闭函数.
(1)判断是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.
(2)若是闭函数,求实数的取值范围.
(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)