2018-2019学年苏教版  选修2-3   1.5.1 二项式定理  作业
2018-2019学年苏教版  选修2-3   1.5.1 二项式定理   作业第4页

点睛:(1)本题主要考查二项式定理和二项式展开式的系数,意在考查学生对这些基础知识的掌握水平.(2)注意〖(x-1/2x)〗^n的二项展开式的第三项系数为1/4 C_n^2,第三项的二项式系数为C_n^2,不要混淆.

三、解答题

11.已知展开式的各项系数之和比展开式的二项式系数之和小240.

(1)求的值;

(2)求展开式中系数最大的项;

(3)求展开式的奇数项的系数之和.

【答案】(1) (2)(3)=3281

【解析】(1)由题意可知,解关于的一元二次方程可求出n的值.

(2)由于n=4,所以展开式系数最大的项为第三项.

(3)分别令x=1,和x=-1可得奇数项系数与偶数项系数的和;以及奇数项系数与偶数项系数的差.从而解得奇数项的系数和

(1)由题意知:,得 ............5分

(2)由题意知系数最大的项即是系数最大的项

(3)设

令 得

令 得

得奇数项系数和=3281

12.已知(4+)n展开式中的倒数第三项的二项式系数为45.

(1)求n;

(2)求含有x3的项;

(3)求二项式系数最大的项.