2019-2020学年人教B版选修2-12.1.1 曲线与方程的概念作业
2019-2020学年人教B版选修2-12.1.1 曲线与方程的概念作业第2页

C.y=1/2 lg x与y=lg √x

D.y=x与x2-y2=0

答案:C

5.平面内与定点(-1,2)和直线3x+4y-5=0的距离相等的点的轨迹是     .

解析:因为(-1,2)在直线3x+4y-5=0上,

  所以满足条件的点的轨迹是过定点(-1,2)且垂直于3x+4y-5=0的直线.

答案:直线

6.方程(x+y-1)√(x"-" 1)=0表示的图形是              .

解析:由方程(x+y-1)√(x"-" 1)=0,可得{■(x+y"-" 1=0"," @x"-" 1≥0)┤或{■(x"-" 1≥0"," @√(x"-" 1)=0"," )┤即x+y-1=0(x≥1)或x=1.

答案:直线x=1或直线x+y-1=0(x≥1)

7.(1)方程(x-1)2+〖"(" x^2+y^2 "-" 1")" 〗^2=0表示的图形为     .

(2)方程(x-1)2〖"(" x^2+y^2 "-" 1")" 〗^2=0表示的图形为     .

解析:(1)∵(x-1)2+〖"(" x^2+y^2 "-" 1")" 〗^2=0,

  ∴{■(x"-" 1=0"," @x^2+y^2 "-" 1=0"," )┤

  ∴{■(x=1"," @y=0"," )┤即方程表示的图形是点(1,0).

  (2)∵(x-1)2〖"(" x^2+y^2 "-" 1")" 〗^2=0,

  ∴x-1=0或x2+y2-1=0,即方程表示的图形是直线x-1=0或圆x2+y2-1=0.

答案:(1)点(1,0) (2)直线x-1=0或圆x2+y2-1=0

★8.已知动点P在曲线2x2-y=0上移动,求点A(0,-1)与点P连线中点的轨迹方程.

解:设AP的中点坐标为(x,y),

  则P(2x,2y+1)在2x2-y=0上,

  即2(2x)2-(2y+1)=0,

  整理,得2y=8x2-1.

9.点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时,求点M的轨迹方程.