C.y=1/2 lg x与y=lg √x
D.y=x与x2-y2=0
答案:C
5.平面内与定点(-1,2)和直线3x+4y-5=0的距离相等的点的轨迹是 .
解析:因为(-1,2)在直线3x+4y-5=0上,
所以满足条件的点的轨迹是过定点(-1,2)且垂直于3x+4y-5=0的直线.
答案:直线
6.方程(x+y-1)√(x"-" 1)=0表示的图形是 .
解析:由方程(x+y-1)√(x"-" 1)=0,可得{■(x+y"-" 1=0"," @x"-" 1≥0)┤或{■(x"-" 1≥0"," @√(x"-" 1)=0"," )┤即x+y-1=0(x≥1)或x=1.
答案:直线x=1或直线x+y-1=0(x≥1)
7.(1)方程(x-1)2+〖"(" x^2+y^2 "-" 1")" 〗^2=0表示的图形为 .
(2)方程(x-1)2〖"(" x^2+y^2 "-" 1")" 〗^2=0表示的图形为 .
解析:(1)∵(x-1)2+〖"(" x^2+y^2 "-" 1")" 〗^2=0,
∴{■(x"-" 1=0"," @x^2+y^2 "-" 1=0"," )┤
∴{■(x=1"," @y=0"," )┤即方程表示的图形是点(1,0).
(2)∵(x-1)2〖"(" x^2+y^2 "-" 1")" 〗^2=0,
∴x-1=0或x2+y2-1=0,即方程表示的图形是直线x-1=0或圆x2+y2-1=0.
答案:(1)点(1,0) (2)直线x-1=0或圆x2+y2-1=0
★8.已知动点P在曲线2x2-y=0上移动,求点A(0,-1)与点P连线中点的轨迹方程.
解:设AP的中点坐标为(x,y),
则P(2x,2y+1)在2x2-y=0上,
即2(2x)2-(2y+1)=0,
整理,得2y=8x2-1.
9.点A(3,0)为圆x2+y2=1外一点,P为圆上任意一点,若AP的中点为M,当P在圆上运动时,求点M的轨迹方程.