解得x0=-2/3或x0=2.
∴切点的坐标为("-" 2/3 "," 49/27)或(2,3).
当切点为("-" 2/3 "," 49/27)时,有49/27=4×("-" 2/3)+a,
∴a=121/27;
当切点为(2,3)时,有3=4×2+a,∴a=-5.
因此,a=121/27,切点为("-" 2/3 "," 49/27)或a=-5,切点为(2,3).
B组
1.在曲线y=x2上切线倾斜角为π/4的点是( )
A.(0,0) B.(2,4)
C.(1/4 "," 1/16) D.(1/2 "," 1/4)
解析:∵切线的倾斜角为π/4,
∴切线的斜率为k=tanπ/4=1,
设切点为(x0,y0),则f'(x0)=lim┬(Δx"→" 0) ("(" x_0+Δx")" ^2 "-" x_0^2)/Δx=(lim)┬(Δx"→" 0) (2Δx"·" x_0+"(" Δx")" ^2)/Δx=2x0,
∴2x0=1,x0=1/2,y0=(1/2)^2=1/4.
答案:D
2.在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为 .
解析:设y=f(x),P(x0,y0)(x0<0),
由题意知f'(x0)=3x_0^2-10=2,∴x_0^2=4.
∴x0=-2.∴y0=15.
∴点P的坐标为(-2,15).
答案:(-2,15)
3.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为 .
解析:∵曲线y=x3在点(1,1)处的切线斜率为k=lim┬(Δx"→" 0) ("(" 1+Δx")" ^3 "-" 1)/Δx=(lim)┬(Δx"→" 0)[(Δx)2+3Δx+3]=3,
∴切线方程为y-1=3(x-1),切线与x轴的交点为(2/3 "," 0),与x=2的交点为(2,4).
∴围成的三角形的面积为S=1/2×4/3×4=8/3.
答案:8/3
4.导学号88184020若函数f(x)在x=a处的导数为m,求lim┬(Δx"→" 0) (f"(" a+2Δx")-" f"(" a"-" 2Δx")" )/Δx的值.
解∵(lim)┬(Δx"→" 0) (f"(" a+Δx")-" f"(" a")" )/Δx=m,
∴lim┬(Δx"→" 0) (f"(" a+2Δx")-" f"(" a"-" 2Δx")" )/Δx
=lim┬(Δx"→" 0) (f"(" a+2Δx")-" f"(" a")" +f"(" a")-" f"(" a"-" 2Δx")" )/Δx