M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是( )
A.相交
B.平行
C.垂直
D.不能确定
解析:选B.由题意可得A1M=A1B,AN=AC,所以分别取BC,BB1上的点P,Q,使得CP=BC,BQ=BB1,连接MQ,NP,PQ,则MQ綊B1A1,NP綊AB,又B1A1綊AB,故MQ綊NP,所以四边形MQPN是平行四边形,则MN∥QP,QP⊂平面BCC1B1,MN⊄平面BCC1B1,则MN∥平面BCC1B1,故选B.
5.在正方体ABCDA1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为________.
解析:如图,连接AC,BD交于O点,连接OE,因为OE∥BD1,而OE⊂平面ACE,BD1⊄平面ACE,所以BD1∥平面ACE.
答案:平行
6.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于________.
解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,
所以EF∥AC,所以F为DC的中点.
故EF=AC=.
答案:
7.(2019·重庆六校联考)如图,在四棱锥PABCD中,底面ABCD为菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=2,E,F分别为AB和PD的中点.
(1)求证:AF∥平面PEC;
(2)求点F到平面PEC的距离.