解析 取A1B1的中点M,连接GM、HM,因为在正方体ABCD-A1B1C1D1中,M、H、G为A1B1、B1C1、B1B的中点,所以△GMH为正三角形,∠MGH为EF与GH所成的角,所以∠MGH=60°.
答案 60°
类型一 空间两条直线位置关系的判断
【例1】 如图,长方体ABCD-A1B1C1D1中,判断下列直线的位置关系:
①直线A1B与直线D1C的位置关系是________;
②直线A1B与直线B1C的位置关系是________;
③直线D1D与直线D1C的位置关系是________;
④直线AB与直线B1C的位置关系是________.
解析 直线D1D与直线D1C显然相交于D1点,所以③应该填"相交";直线A1B与直线D1C在平面A1BCD1中,且没有交点,则两直线"平行",所以①应该填"平行";点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,且B1∉A1B,则直线A1B与直线B1C"异面".同理,直线AB与直线B1C"异面".所以②④都应该填"异面".
答案 ①平行 ②异面 ③相交 ④异面
规律方法 1.判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.
2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.
【训练1】 (1)若a、b是异面直线,b、c是异面直线,则( )
A.a∥c B.a、c是异面直线