二、解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.
15. (本小题满分14分)
在△ABC中,角A,B,C所对的边分别为a,b,c,且ccos B+bcos C=3acos B.
(1) 求cos B的值;
(2) 若|\s\up6(→(→)-\s\up6(→(→)|=2,△ABC的面积为2,求边b.
16. (本小题满分14分)
如图,在四棱锥VABCD中,底面ABCD是矩形,VD⊥平面ABCD,过AD的平面分别与VB,VC交于点M,N.
(1) 求证:BC⊥平面VCD;
(2) 求证:AD∥MN.
17. (本小题满分14分)
某房地产商建有三栋楼宇A,B,C,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域ABC外建第四栋楼宇D,规划要求楼宇D对楼宇B,C的视角为120°,如图所示,假设楼宇大小高度忽略不计.
(1) 求四栋楼宇围成的四边形区域ABDC面积的最大值;
(2) 当楼宇D与楼宇B,C间距离相等时,拟在楼宇A,B间建休息亭E,在休息亭E和楼宇A,D间分别铺设鹅卵石路EA和防腐木路ED,如图.已知铺设鹅卵石路、防腐木路的单价分别为a,2a(单位:元/千米,a为常数).记∠BDE=θ,求铺设此鹅卵石路和防腐木路的总费用的最小值.