所以AC∥平面DEF.
3. 解析:选A 作出如图所示的正方体.易知AN∥BM,AC∥EM,且AN∩AC=A,所以平面ACN∥平面BEM.
4. 解析:选A ①仅满足mα,nβ,m∥n,不能得出α∥β,不正确;②设m,n确定平面为γ,则有α∥γ,β∥γ,从而α∥β,正确;③④均不满足两个平面平行的条件,故③④均不正确.
5. 解析:选D 当M与D1重合时,∵DD1∥A1A,DD1面AA1C1C,AA1面AA1C1C,
∴MD∥面AA1C1C.当M不与D1重合时,DM与AA1相交,也即DM与面AA1C1C相交.
6. 解析:由线面平行的判定定理知:BD∥平面EFGH,AC∥平面EFGH.
答案:2
7. 解析:如图,取BC中点F,连SF.
∵G为△ABC的重心,
∴A,G,F共线且AG=2GF.
又∵AE=2ES,∴EG∥SF.
又SF 平面SBC,EG平面SBC,
∴EG∥平面SBC.
答案:EG∥平面SBC
8. 解析:∵HN∥BD,HF∥DD1,HN∩HF=H,BD∩DD1=D,
∴平面NHF∥平面B1BDD1,故线段FH上任意点M与N连接,
有MN∥平面B1BDD1.
答案:M∈线段FH