C.a<2 D.a≤
【解析】 f′(x)=3ax2-1.因为函数f(x)在R上是减函数,所以f′(x)=3ax2-1≤0恒成立,所以a≤0.故选A.
【答案】 A
4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2.则f(x)>2x+4的解集为( )
【导学号:05410019】
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
【解析】 构造函数g(x)=f(x)-(2x+4),
则g(-1)=2-(-2+4)=0,又f′(x)>2.
∴g′(x)=f′(x)-2>0,∴g(x)是R上的增函数.
∴f(x)>2x+4⇔g(x)>0⇔g(x)>g(-1),
∴x>-1.
【答案】 B
5.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )
A.(-∞,-)∪[,+∞)
B.[-,]
C.(-∞,-)∪(,+∞)
D.(-, )
【解析】 f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立且不恒为0,Δ=4a2-12≤0⇒-≤a≤.
【答案】 B
二、填空题
6.函数f(x)=x-2sin x在(0,π)上的单调递增区间为