故选:C.
点睛:解决空间位置关系问题的方法
(1)解决空间中点、线、面位置关系的问题,首先要明确空间位置关系的定义,然后通过转化的方法,把空间中位置关系的问题转化为平面问题解决.
(2)解决位置关系问题时,要注意几何模型的选取,如利用正(长)方体模型来解决问题.
4.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?"其意思为:"在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有
A. 14斛 B. 22斛
C. 36斛 D. 66斛
【答案】B
【解析】
试题分析:设圆锥底面半径为r,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.
考点:圆锥的性质与圆锥的体积公式
视频
5.设正方体的表面积为24,一个球内切于该正方体,那么这个球的体积是 ( )
A. B. C. D.
【答案】A
【解析】
【分析】