2019-2020学年人教B版选修1-1 导数的几何意义 课时作业
2019-2020学年人教B版选修1-1    导数的几何意义   课时作业第2页

A.y=9x B.y=9x-26

C.y=9x+26 D.y=9x+6或y=9x-26

【解析】选D.设点P(x0,y0),

则Δy/Δx=(f(x_0+Δx)-f(x_0))/Δx

=((x_0+Δx)^3-3(x_0+Δx)^2+1-x_0^3+3x_0^2-1)/Δx

=(Δx)2+3x0Δx-3Δx+3x_0^2-6x0.

所以f'(x0)=lim┬(Δx→0)

=3x_0^2-6x0,于是3x_0^2-6x0=9,解得x0=3或x0=-1,

因此,点P的坐标为(3,1)或(-1,-3).

又切线斜率为9,所以曲线在点P处的切线方程为y=9(x-3)+1或y=9(x+1)-3,即y=9x-26或y=9x+6.

二、填空题(每小题4分,共8分)

4.(2016·德州高二检测)已知曲线f(x)=x3在点(2,8)处的切线方程为12x-ay-16=0,则实数a的值为    .

【解析】因为f'(2)=lim┬(Δx→0) ((2+Δx)^3-2^3)/Δx=

lim┬(Δx→0) (12Δx+6(Δx)^2+(Δx)^3)/Δx=12,

所以曲线f(x)=x3在点(2,8)处的切线的斜率为12,

所以12/a=12,a=1.

答案:1

【补偿训练】(2016·福州高二检测)已知函数y=ax2+b在点(1,3)处的切线斜率为2,则b/a=     .

【解析】lim┬(Δx→0) (a(1+Δx)^2-a)/Δx=lim┬(Δx→0)(a·Δx+2a)=2a=2,所以a=1,

又3=a×12+b,所以b=2,即b/a=2.

答案:2

5.(2016·北京东城高二检测)如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别