2019-2020学年苏教版选修1-1 函数的最大(小)值与导数 课时作业
2019-2020学年苏教版选修1-1   函数的最大(小)值与导数     课时作业第3页

所以f(x)在上单调递减,在上单调递增.

所以f(x)min=f(1)=1-3-a=-2-a=n.

又因为f(0)=-a,f(3)=18-a,所以f(0)

所以f(x)max=f(3)=18-a=m,

所以m-n=18-a-(-2-a)=20.

答案:20

8.函数f(x)=1/2ex(sinx+cosx)在区间[0,π/2]上的值域为________.

【解析】因为x∈[0,π/2],所以f'(x)=excosx≥0,

所以f(0)≤f(x)≤f(π/2).即1/2≤f(x)≤1/2 e^(π/2).

答案:[1/2,1/2 e^(π/2) ]

【误区警示】解答本题易出现如下错误:一是导函数易求错;二是忽略函数的定义域区间.

三、解答题(每小题10分,共20分)

9.已知函数f(x)=(1-x)/x+lnx,求f(x)在[1/2,2]上的最大值和最小值.

【解析】f'(x)=(-x-1+x)/x^2 +1/x=(x-1)/x^2 .

由f'(x)=0,得x=1.

所以在[1/2,2]上,当x变化时,f'(x),f(x)的变化情况如表:

x 1/2 (1/2,1) 1 (1,2) 2 f'(x) - 0 + f(x) 1-ln2 单调

递减↘ 极小值0 单调递增↗ -1/2+ln2 因为f(1/2)-f(2)=3/2-2ln2=1/2(lne3-ln16),而e3>16,所以f(1/2)>f(2)>0.

所以f(x)在[1/2,2]上的最大值为f(1/2)=1-ln2,最小值为0.

【补偿训练】已知f(x)=xlnx,求函数f(x)在(t>0)上的最小值.

【解析】f'(x)=lnx+1,令f'(x)=0,得x=1/e.

当x∈(0, 1/e)时,f'(x)<0,f(x)单调递减;