(Ⅱ)设,求当的面积取到第(Ⅰ)问中的最大值S时弦长L的取值范围.
6、过轴上动点引抛物线的两条切线、,、为切点.
(1)若切线,的斜率分别为和,求证: 为定值,并求出定值;
(2)求证:直线恒过定点,并求出定点坐标;
(3)当最小时,求的值.
7、已知椭圆:的左焦点为,其左右顶点为、,椭圆与轴正半轴的交点为,的外接圆的圆心在直线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线,是椭圆上的动点,,垂足为,是否存在点,使得为等腰三角形?若存在,求出点的坐标,若不存在,请说明理由.