20.(12分)求半径为2,圆心在直线L:y=2x上,且被直线l:x﹣y﹣1=0所截弦的长为2的圆的方程.
21.(12分)如图,在四棱锥P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.
(1)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明;
(2)证明平面EFG⊥平面PAD,并求出D到平面EFG的距离.
22.(14分)在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.