∵|(OB) ⃗|=1,∠AOB=150°,
∴B(-cos 30°,sin 30°),
∴B("-" √3/2 "," 1/2).
∵|(OC) ⃗|=3,∴C(-3sin 30°,-3cos 30°),
即C("-" 3/2 ",-" 3/2 √3).
又A(2,0),
∴(AB) ⃗=("-" √3/2 "," 1/2)-(2,0)=("-" √3/2 "-" 2"," 1/2),
(BC) ⃗=("-" 3/2 ",-" 3/2 √3)-("-" √3/2 "," 1/2)=((√3 "-" 3)/2 "," ("-" 3√3 "-" 1)/2).
B组 能力提升
1.设m=(a,b),n=(c,d),规定两向量m,n之间的一个运算""为mn=(ac-bd,ad+bc),若已知p=(1,2),pq=(-4,-3),则q等于( )
A.(-2,1) B.(2,1)
C.(2,-1) D.(-2,-1)
解析设q=(x,y),由题设中运算法则,得
pq=(x-2y,y+2x)=(-4,-3),
即{■(x"-" 2y="-" 4"," @y+2x="-" 3"," )┤解得{■(x="-" 2"," @y=1"." )┤
故q=(-2,1).
答案A
2.已知向量a=(1,3),b=(m,2m-3),平面上任意向量c都可以唯一地表示为c=λa+μb(λ,μ∈R),则实数m的取值范围是( )
A.(-∞,0)∪(0,+∞)
B.(-∞,3)
C.(-∞,-3)∪(-3,+∞)
D.[-3,3)
解析因为平面上任意向量c都可以用a,b唯一表示,所以a,b是平面向量的一组基底,即a,b为不共线的非零向量,则3m≠2m-3,即m≠-3,故选C.
答案C
3.平面上有A(2,-1),B(1,4),D(4,-3)三点,点C在直线AB上,且(AC) ⃗=1/2 (BC) ⃗,连接DC延长至点E,使|(CE) ⃗|=1/4|(ED) ⃗|,则点E的坐标为 .
解析∵(AC) ⃗=1/2 (BC) ⃗,∴A为BC中点,∴点C的坐标为(3,-6).又|(CE) ⃗|=1/4|(ED) ⃗|,且E在DC的延长线上,
∴(CE) ⃗=-1/4 (ED) ⃗.
设E(x,y),则(x-3,y+6)=-1/4(4-x,-3-y).
于是{■(x"-" 3="-" 1/4 "(" 4"-" x")," @y+6="-" 1/4 "(-" 3"-" y")," )┤解得{■(x=8/3 "," @y="-" 7"." )┤
故点E坐标是(8/3 ",-" 7).
答案(8/3 ",-" 7)