2017-2018学年人教B版必修四 三角函数的诱导公式(1) 课时作业
2017-2018学年人教B版必修四       三角函数的诱导公式(1)  课时作业第3页

  1.A [解析] tan 150°=tan(180°-30°)=-tan 30°=-.

  2.C [解析] =tan(nπ+α)=tan α.

  3.D [解析] 依题意,得sin α=log8==-,∵α∈,∴cos α===,

  ∴tan(2π-α)=-tan α=-=-=.

  4.A [解析] 原式=sin230°+sin245°-2sin 30°+cos245°=()2+()2-2×+()2=.

  5.D [解析] ∵sin(π+θ)=-cos(2π-θ),∴-sin θ=-cos θ,∴tan θ=.又∵|θ|<,∴θ=.

  6.A [解析] ∵tan(5π+α)=m,∴tan α=m,原式====,故选A.

  7.B [解析] 由=2,得tan α=3,则sin(α-5π)·cos(3π-α)=-sin α·(-cos α)=sin α·cos α===.

  8.1 [解析] ∵f(2018)=asin(2018π+α)+bcos(2018π+β)=asin(π+2017π+α)+bcos(π+2017π+β)=-asin(2017π+α)-bcos(2017π+β)=-f(2017),又f(2017)=-1,∴f(2018)=1.

  9.- [解析] cos=cos=-cos=-.

  10.tan α [解析] 原式===tan α.

  11.- [解析] 由已知得tan 26°=-a,于是cos 26°=,sin 26°=,∴sin(-206°)+cos(-206°)=sin 26°-cos 26°=-=-.

  12.解:由sin(π+α)=-sin α=-,知sin α=.

  (1)sin(5π-α)=sin(π-α)=sin α=.

  (2)sin(α-3π)=-sin(3π-α)=-sin[2π+(π-α)]=-sin(π-α)=-sin α=-.

  13.解:(1)∵点P在单位圆上,∴由正弦的定义得sin α=-.

  (2)原式=·==,

  由余弦的定义得cos α=,故原式=.