由题设及排序原理知上式显然成立.
9.设a,b,c是正实数,求证:aabbcc≥(abc).
证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc,据排序不等式,有
alga+blgb+clgc≥blga+clgb+algc;
alga+blgb+clgc≥clga+algb+blgc.
且alga+blgb+clgc=alga+blgb+clgc,
以上三式相加整理,得3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc),
即lg(aabbcc)≥·lg(abc).
故aabbcc≥(abc).