解:(1)∵p为假命题,q为真命题,
∴p∧q为假命题,p∨q为真命题,綈p为真命题.
(2)∵p为假命题,q为假命题,
∴p∧q为假命题,p∨q为假命题,綈p为真命题.
(3)∵p为真命题,q为真命题,
∴p∧q为真命题,p∨q为真命题,綈p为假命题.
(4)∵p为真命题,q为假命题,
∴p∧q为假命题,p∨q为真命题,綈p为假命题.
8.已知p:3-x≤0或3-x>4,q:<1,求p且q.
解:由3-x≤0或3-x>4,
解得,p:x≥3或x<-1.
由-1<0,即<0,
解得,q:x<-2或x>3.
所以,p且q:x<-2或x>3.
[能力提升]
1.已知实数a满足1 解析:由y=loga(2-ax)在[0,1]上是减函数,得a>1且2-a>0,即1 答案:①④ 2.已知命题p:集合{x|x=(-1)n,n∈N}只有3个真子集,q:集合{y|y=x2+1,x∈R}与集合{x|y=x+1}相等.则下列新命题:①p或q;②p且q;③非p;④非q.其中真命题的个数为________. 解析:命题p的集合为{-1,1},只有2个元素,有3个真子集,故p为真;q中的两个集合不相等,故q为假,因此有2个新命题为真. 答案:2 3.设函数f(x)=lg的定义域为A,若命题p:3∈A与q:5∈A有且只有一个为真命题,求实数a的取值范围. 解:A=,