8.在复平面内A,B,C三点对应的复数分别为1,2+i,-1+2i.
(1)求\s\up6(→(→),\s\up6(→(→),\s\up6(→(→)对应的复数;
(2)判断△ABC的形状;
(3)求△ABC的面积.
解析: (1)\s\up6(→(→)对应的复数为zB-zA=(2+i)-1=1+i.
\s\up6(→(→)对应的复数为
zC-zB=(-1+2i)-(2+i)=-3+i.
\s\up6(→(→)对应的复数为
zC-zA=(-1+2i)-1=-2+2i.
(2)由(1)可得:
|\s\up6(→(→)|=,|\s\up6(→(→)|=,|\s\up6(→(→)|=2
∴|\s\up6(→(→)|2+|\s\up6(→(→)|2=|\s\up6(→(→)|2
∴△ABC为直角三角形
(3)由(2)可知,三角形为直角三角形,∠A为直角
∴S=|\s\up6(→(→)||\s\up6(→(→)|
=××2
=2
9.已知平行四边形OABC的三个顶点O、A、C对应的复数分别为0,4+2i,-2+4i.试求:
(1)点B对应的复数;
(2)判断▱OABC是否为矩形.
解析: (1)∵\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)
=4+2i+(-2+4i)
=2+6i,
∴点B对应的复数为2+6i.