则cos θ==,
故a在b方向上的投影为
|a|cos θ=×=.
或直接根据计算a在b方向上的投影.
答案
6.已知平面向量a=(1,x),b=(2x+3,-x)(x∈R).
(1)若a⊥b,求x的值;
(2)若a∥b,求|a-b|.
解 (1)∵a⊥b,
∴a·b=0,即1×(2x+3)+x×(-x)=0,
解得x=-1或x=3.
(2)∵a∥b,∴1×(-x)-x(2x+3)=0,
解得x=0或x=-2.
当x=0时,a=(1,0),b=(3,0),
∴a-b=(-2,0),∴|a-b|=2.
当x=-2时,a=(1,-2),b=(-1,2),
∴a-b=(2,-4),
∴|a-b|=2.
∴|a-b|=2或2.
7.已知a=(1,-1),b=(λ,1),若a与b的夹角α为钝角,求实数λ的取值范围.
解 ∵a=(1,-1),b=(λ,1),
∴|a|=,|b|=,a·b=λ-1.
∵a,b的夹角α为钝角.
∴即