(3)求点B到平面OCD的距离.
20. (12分)已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求证:EF⊥平面ACD;
(Ⅲ)求四棱锥A﹣BCDE的体积.
21. (12分)已知圆,直线过定点 A (1,0).
(1)若与圆C相切,求的方程;
(2)若的倾斜角为,与圆C相交于P,Q两点,求线段PQ的中点M的坐标;
(3)若与圆C相交于P,Q两点,求△CPQ面积的最大值.
22. (12分) 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.
(Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为,求该三棱锥的侧面积