=(BD) ⃗-2(BB_1 ) ⃗=((BD) ⃗-(BB_1 ) ⃗)-(BB_1 ) ⃗
=(B_1 D) ⃗-(BB_1 ) ⃗=(B_1 D) ⃗+(B_1 B) ⃗≠(BD_1 ) ⃗;
④((B_1 D_1 ) ⃗-(A_1 A) ⃗)+(DD_1 ) ⃗=((B_1 D_1 ) ⃗-(B_1 B) ⃗)+(DD_1 ) ⃗=(BD_1 ) ⃗+(DD_1 ) ⃗≠(BD_1 ) ⃗.
答案:A
5.如图所示,已知四面体ABCD,E,F,G,H分别为AB,BC,CD,AC的中点,则 1/2((AB) ⃗+(BC) ⃗+(CE) ⃗+(ED) ⃗)化简的结果为( )
A.(BF) ⃗B.(EH) ⃗
C.(HG) ⃗D.(FG) ⃗
解析:1/2((AB) ⃗+(BC) ⃗+(CE) ⃗+(ED) ⃗)=1/2((AC) ⃗+(CE) ⃗+(ED) ⃗)=1/2((AE) ⃗+(ED) ⃗)=1/2×2(HG) ⃗=(HG) ⃗,故选C.
答案:C
6.如图所示,已知A,B,C三点不共线,P为一定点,O为平面ABC外任一点,则下列能正确表示向量(OP) ⃗的为 .(填序号)
①(OA) ⃗+2(AB) ⃗+2(AC) ⃗;②(OA) ⃗-3(AB) ⃗-2(AC) ⃗;
③(OA) ⃗+3(AB) ⃗-2(AC) ⃗;④(OA) ⃗+2(AB) ⃗-3(AC) ⃗.
解析:∵(AP) ⃗=3(AB) ⃗-2(AC) ⃗,
∴(AO) ⃗+(OP) ⃗=3(AB) ⃗-2(AC) ⃗,
∴(OP) ⃗=(OA) ⃗+3(AB) ⃗-2(AC) ⃗.
答案:③
7.已知空间向量s,r不共线,若向量a=ts+r,b=s-t2r,且a与b共线,则实数t的值为 .
解析:a∥b⇒存在实数λ,使得a=λb,
即ts+r=λ(s-t2r),
于是得{■(t=λ"," @1="-" λt^2 "," )┤
解得{■(t="-" 1"," @λ="-" 1"." )┤
答案:-1