2018-2019学年人教B版选修1-1 直线与抛物线的位置关系 课时作业
2018-2019学年人教B版选修1-1  直线与抛物线的位置关系    课时作业第2页

  综上,k的取值范围是[-1,1].

  【答案】C

5.线段AB是抛物线y2=x的一条焦点弦,且|AB|=4,则线段AB的中点C到直线x+1/2=0的距离为    .

  【解析】设点A(x1,y1),B(x2,y2),

  因为|AB|=x1+x2+p=4,所以x1+x2=4-1/2=7/2,

  所以中点C(x0,y0)到直线x+1/2=0的距离为x0+1/2=(x_1+x_2)/2+1/2=7/4+1/2=9/4.

  【答案】9/4

6.已知抛物线y2=2px(p>0)的准线为l,过点M(1,0)且斜率为√3的直线与l相交于点A,与抛物线的一个交点为B,若(AM) ⃗=(MB) ⃗,则p=     .

  【解析】由题知准线l为x=-p/2(p>0),

  过点M且斜率为√3的直线为y=√3(x-1),

  则点A("-" p/2 "," √3 ("-" p/2 "-" 1)),

  设B(x,y),由(AM) ⃗=(MB) ⃗可知M为AB的中点,

  又M(1,0),

  所以{■("-" p/2+x=2"," @√3 ("-" p/2 "-" 1)+y=0"," )┤即{■(x=2+p/2 "," @y=√3 (p/2+1)"," )┤

  代入y2=2px,得p2+4p-12=0,

  即p=2或p=-6(舍去).

  【答案】2

7.已知抛物线y2=-x与直线y=k(x+1)相交于A,B两点.

(1)求证:OA⊥OB.

(2)当△OAB的面积为√10时,求k的值.

  【解析】(1)如图所示,由{■(y^2="-" x"," @y=k"(" x+1")" )┤消去x得ky2+y-k=0.

  

  设点A(x1,y1),B(x2,y2),由根与系数的关系得y1·y2=-1,y1+y2=-1/k.

  ∵A,B两点均在抛物线y2=-x上,

  ∴y_1^2=-x1,y_2^2=-x2,

  ∴y_1^2·y_2^2=x1x2.

  又∵kOA·kOB=y_1/x_1 ·y_2/x_2 =(y_1 y_2)/(x_1 x_2 )=1/(y_1 y_2 )=-1,∴OA⊥OB.

  (2)设直线与x轴交于点N,显然k≠0.

  令y=0,得x=-1,即N(-1,0).

∵S△OAB=S△OAN+S△OBN