4.在△ABC中,已知ln(sin A+sin B)=ln sin A+ln sin B-ln(sin B-sin A),且cos(A-B)+cos C=1-cos 2C.
(1)确定△ABC的形状;
(2)求的取值范围.
解:(1)∵ln(sin A+sin B)
=ln sin A+ln sin B-ln(sin B-sin A),
∴ln(sin2B-sin2A)=ln(sin A·sin B),
∴sin2B-sin2A=sin A·sin B.
由正弦定理,得b2-a2=ab.①
又∵cos(A-B)+cos C=1-cos 2C,
∴cos(A-B)-cos(A+B)=2sin2C,
∴2sin Asin B=2sin2C.
由正弦定理,得ab=c2.②
由①②,得b2-a2=c2,
∴b2=a2+c2,
∴△ABC是以B为直角的直角三角形.
(2)由正弦定理,得=
=sin A+sin C=sin A+sin=sin.