2018-2019学年北师大版选修1-1 3.4.2 导数的乘法与除法法则 作业
2018-2019学年北师大版选修1-1 3.4.2 导数的乘法与除法法则 作业第2页

解:(1)y'=(3x2)'+(xcos x)'=6x+cos x-xsin x.

  (2)y'=("(" lnx")'(" x^2+1")-(" lnx")(" x^2+1")'" )/("(" x^2+1")" ^2 )

  =(1/x "(" x^2+1")-(" lnx")·" 2x)/("(" x^2+1")" ^2 )=(x^2+1"-" 2x^2 lnx)/(x"(" x^2+1")" ^2 ).

  (3)y'=((4"-" x^3)/(x^2 cosx))'

  =("(" 4"-" x^3 ")'" x^2 cosx"-(" 4"-" x^3 ")(" x^2 cosx")'" )/("(" x^2 cosx")" ^2 )

  =("-" 3x^2 "·" x^2 cosx"-(" 4"-" x^3 ")(" 2xcosx"-" x^2 sinx")" )/(x^4 cos^2 x)

  =("-" x^4 cosx"-" 8xcosx+4x^2 sinx"-" x^5 sinx)/(x^4 cos^2 x)

  =("(" 4x"-" x^4 ")" sinx"-(" x^3+8")" cosx)/(x^3 cos^2 x).

  (4)方法一:y'=(1/√x "·" cosx)'

  =(1/√x)'cos x+1/√x(cos x)'

  =(x^("-" 1/2) )'cos x-1/√x sin x

  =-1/2 x^("-" 3/2) cos x-1/√x sin x

  =-cosx/(2√(x^3 ))-1/√x sin x=-(cosx+2xsinx)/(2x√x).

  方法二:y'=(1/√x "·" cosx)'=(cosx/√x)'

  =("(" cosx")'" √x "-" cosx"(" √x ")'" )/("(" √x ")" ^2 )

  =("-" sinx"·" √x "-" cosx"·" 1/2 x^("-" 1/2))/x

  =-(√x sinx+1/(2√x) cosx)/x=-(2xsinx+cosx)/(2x√x)

  =-(cosx+2xsinx)/(2x√x).

  (5)因为y=x3+x^("-" 3/2)+sinx/x^2 ,

  所以y'=(x3)'+(x^("-" 3/2))'+("(" sinx")'" x^2 "-" sinx"(" x^2 ")'" )/x^4

  =3x2-3/2 x^("-" 5/2)+(x^2 cosx"-" 2xsinx)/x^4

  =3x2-3/2 x^("-" 5/2)+x-2cos x-2x-3sin x.

9.已知函数f(x)=(ax"-" 6)/(x^2+b) 的图像在点M(-1,f(-1))处的切线的方程为x+2y+5=0,求函数的解析式.

解:因为点M(-1,f(-1))在切线上,所以-1+2f(-1)+5=0,所以f(-1)=-2.

  因为f'(x)=(a"(" x^2+b")-" 2x"(" ax"-" 6")" )/("(" x^2+b")" ^2 ),

  所以{■(("-" a"-" 6)/(1+b)="-" 2"," @(a"(" 1+b")" +2"(-" a"-" 6")" )/("(" 1+b")" ^2 )="-" 1/2 "," )┤

  解得a=2,b=3(因为b+1≠0,所以b=-1舍去).

  故f(x)=(2x"-" 6)/(x^2+3).