2 [原式=×1+2×2-=2.]
7.已知函数f(x)=4+ax-1的图像恒过定点P,则点P的坐标是________.
(1,5) [由f(1)=4+a0=5知,点P的坐标为(1,5).]
8.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上是增加的,则实数m的最小值等于________.
1 [由f(1+x)=f(1-x)得a=1,从而函数f(x)的单调递增区间为[1,+∞),从而m的最小值为1.]
三、解答题
9.(2018·深圳模拟)已知函数f(x)=ax,a为常数,且函数的图像过点(-1,2).
(1)求a的值;
(2)若g(x)=4-x-2,且g(x)=f(x),求满足条件的x的值.
[解] (1)由已知得-a=2,解得a=1.
(2)由(1)知f(x)=x,
又g(x)=f(x),则4-x-2=x,即x-x-2=0,即2-x-2=0,令x=t,则t>0,t2-t-2=0,即(t-2)(t+1)=0,
又t>0,故t=2,即x=2,解得x=-1,
故满足条件的x的值为-1.
10.已知函数f(x)=+a是奇函数.
(1)求a的值和函数f(x)的定义域;
(2)解不等式f(-m2+2m-1)+f(m2+3)<0.
[解] (1)因为函数f(x)=+a是奇函数,所以f(-x)=-f(x),即+a=-a,即=,从而有1-a=a,解得a=.3分
又2x-1≠0,所以x≠0,故函数f(x)的定义域为(-∞,0)∪(0,+∞).5分
(2)由f(-m2+2m-1)+f(m2+3)<0,得f(-m2+2m-1)<-f(m2+3),因为