(1)y=(3x3-4x)(2x+1);
(2)y=;
(3)y=xsincos;
(4)y=.
解:(1)法一:因为y=(3x3-4x)(2x+1)=6x4+3x3-8x2-4x,所以y′=24x3+9x2-16x-4.
法二:y′=(3x3-4x)′(2x+1)+(3x3-4x)(2x+1)′=(9x2-4)(2x+1)+(3x3-4x)·2=24x3+9x2-16x-4.
(2)y′=
=
=.
(3)因为y=xsincos
=xsin(4x+π)=-xsin 4x,
所以y′=-sin 4x-x·4·cos 4x
=-sin 4x-2xcos 4x.
(4)y′=
=
=.
10.已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.
解:(1)可判定点(2,-6)在曲线y=f(x)上.
因为f′(x)=(x3+x-16)′=3x2+1.