①f(x)在[-2,-1]上是增加的;
②x=-1是f(x)的极小值点;
③f(x)在[-1,2]上是增加的,在[2,4]上是减少的;
④x=3是f(x)的极小值点.
其中正确的是 .
解析:根据导数与函数的单调性、极值之间的关系可判断.
答案:②③
9.设函数f(x)=a/3x3+bx2+cx+d(a>0),且f'(x)-9x=0的两根分别为1,4.
(1)当a=3且曲线y=f(x)的图像过原点时,求f(x)的解析式;
(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.
解(1)由f(x)=a/3x3+bx2+cx+d,
得f'(x)=ax2+2bx+c.
∵f'(x)-9x=ax2+2bx+c-9x=0的两根为1,4,
∴{■(a+2b+c"-" 9=0"," @16a+8b+c"-" 36=0"," @a=3"." )┤
∴{■(a=3"," @b="-" 3"," @c=12"." )┤
又f(x)=a/3x3+bx2+cx+d过原点,
∴d=0.∴f(x)=x3-3x2+12x.
(2)∵a>0,∴f(x)=a/3x3+bx2+cx+d在(-∞,+∞)内无极值点等价于f'(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立.
由(1)知a+2b+c-9=0,16a+8b+c-36=0,
∴2b=9-5a,c=4a.
∵f'(x)≥0在(-∞,+∞)内恒成立,
∴Δ=(2b)2-4ac=(9-5a)2-16a2
=9(a-1)(a-9)≤0.
∴a∈[1,9],即a的取值范围为[1,9].
10.导学号88184036已知函数f(x)=x-aln x(a∈R).
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程.
(2)求函数f(x)的极值.
解函数f(x)的定义域为(0,+∞),f'(x)=1-a/x.
(1)当a=2时,f(x)=x-2ln x,f'(x)=1-2/x(x>0),∴f(1)=1,f'(1)=-1.
∴y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.
(2)由f'(x)=1-a/x=(x"-" a)/x,x>0,可知
①当a≤0时,f'(x)>0,函数f(x)在(0,+∞)上是增加的,函数f(x)无极值.