证法二:∵a,b是正数,
∴a+b≥2>0.+≥2>0.
∴(a+b)≥4.又∵a+b=1,∴+≥4.
证法三:+=+=1+++1
≥2+2=4.
当且仅当a=b时,取"="号.
8.在△ABC中,若a2=b(b+c).求证:A=2B.
证明: ∵a2=b(b+c),而
cos A===,
cos 2B=2cos2B-1=22-1
=22-1==,
∴cos A=cos 2B.
又A、B是三角形的内角,∴A=2B.
9.(1)设x≥1,y≥1,证明x+y+≤++xy;
(2)设1<a≤b≤c,证明:logab+logbc+logca≤logba+logcb+logac.
证明: (1)由于x≥1,y≥1,所以
x+y+≤++xy⇔xy(x+y)+1≤y+x+(xy)2.
将上式中的右式减左式,得
[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).
由于x≥1,y≥1,
所以(xy-1)(x-1)(y-1)≥0,
从而所要证明的不等式成立.
(2)设logab=x,logbc=y,由对数的换底公式得
logca=,logba=,logcb=,logac=xy.