在课的开始,我激活了教学内容,让学生在课的开始就面对"老师每小时织围巾1/4米"的信息,让学生提出问题,产生疑问,引起学生的认知冲突,产生解决问题的欲望,激发了学生解决问题的冲动。在学生形成的关于问题的多种原始想法中,我关注了动态的生成,抓住鲜活的生成资源,筛选出了关键的问题,使本节课的目标及教学重点成为学生的探讨焦点,体现了教与学的双主体地位。
3、敢于放手研讨。
为了突破本节课的教学难点,在课堂上我让学生折一折、画一画,以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。折纸是为了理解意义。当学生由1/2×2的意义推测出1/4×1/2的意义是表示求1/4的1/2是多少时,我知道学生并不理解为什么这样说。正是通过折纸,学生理解了1/4的意义,1/2的意义,才能理解1/4×1/2的意义。因为学生只有理解了分数的意义,才能理解分数乘分数的意义。通过数形的结合,学生在理解意义的过程中感受计算分数乘分数时为什么是"分子乘分子,分母乘分母"的道理。学生经历了抽象---直观---抽象的探索过程。
4、合适的支点能贯通整个课堂。
这节课表面上感觉按部就搬完成了教学任务,可是总感觉缺少点什么,教学过程(本文来自优秀教育资源网斐.斐.课.件.园)有点脱节。听了同事的数学课,我茅塞顿开!
在折一折的过程中,我直接让学生折1/4×1/2,虽然经过全班同学的努力,在少数同学的带动下折出了1/4×1/2表示1/4的1/2,可是有的迁强。听了刘虹老师的课我终于明白为什么我的课堂脱节,是因为我丢掉了课本提供的支点:先折1/4×2。因为学生由整数的意义得出"1/4×1/2表示1/4的1/2是多少"那只是推测,并不知道为什么,只有体会出1/4×2描2个1/4,才能知道半(1/2)个1/4描1/4的一半,这样才真正明白为什么说1/4×1/2表示1/4的1/2是多少",所以说,折1/4×2是成功完成1/4×1/2的支点,很重要。
5、学具的准备是无声的引导。
要为学生准备充足的学具。只有让学生准备好学具了,学生才可以探索得更深入