解:作DE⊥AC,BF⊥AC,点E,F为垂足,
则AC==5 cm,
DE=BF=4×= cm,
AE=CF== cm,
EF= cm.
折叠后,DE、EF、FB的长度保持不变,
且|\s\up6(→(→)|2=(\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→))2
=|\s\up6(→(→)|2+|\s\up6(→(→)|2+|\s\up6(→(→)|2+2\s\up6(→(→)·\s\up6(→(→)+2\s\up6(→(→)·\s\up6(→(→)+2\s\up6(→(→)·\s\up6(→(→)
=|\s\up6(→(→)|2+|\s\up6(→(→)|2+|\s\up6(→(→)|2+2|\s\up6(→(→)||\s\up6(→(→)|cos 60°
=()2+()2+()2+2×()2×=,
∴BD= cm,即折叠后BD的长为 cm.
如图所示,正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为a.
(1)建立适当的空间直角坐标系,并写出点A,B,A1,C1的坐标;
(2)求AC1与侧面ABB1A1所成的角.
解:(1)如图所示,以点A为坐标
原点,以AB所在直线为y轴,AA1所在直线为
z轴,以经过原点且与平面ABB1A1垂直的直线为x轴,建立空间直角坐标系.由已知得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a,,a).
(2)取A1B1的中点M,则M(0,,a),连结AM,MC1,有\s\up6(→(→)=(-a,0,0),且\s\up6(→(→)=(0,a,0),\s\up6(→(→)=(0,0, a),
∴\s\up6(→(→)·\s\up6(→(→)=0,\s\up6(→(→)·\s\up6(→(→)=0,∴MC1⊥AB,MC1⊥AA1,∵AB∩AA1=A,∴MC1⊥平面ABB1A1.
∴\s\up6(→(→)与\s\up6(→(→)所成角即为所求的角.