解析:∵(-x)+(x+)=,
∴cos(x+)=cos[-(-x)]=sin(-x)=.
答案:
化简的值等于________.
解析:原式=
=
=
=
=-=-.
答案:-
若|cos α|=cos(3π+α),则角α的取值范围为________.
解析:∵|cos α|=cos(3π+α),
而cos(3π+α)=cos(π+α)=-cos α,
∴|cos α|=-cos α,∴cos α≤0,
∴α∈[2kπ+,2kπ+](k∈Z).
答案:[2kπ+,2kπ+](k∈Z)
化简cos(nπ+x)+cos(nπ-x)(n∈Z).
解:当n为奇数时,设n=2k+1(k∈Z),
原式=cos [(2k+1)π+x]+cos [(2k+1)π-x]=cos(π+x)+cos(π-x)=-cos x-cos x=-2cos x;