课时跟踪训练(八) 抛物线的简单性质
1.设抛物线的顶点在原点,焦点F在y轴上,抛物线上的点(k,-2)与F的距离为4,则k的值为( )
A.4 B.-2
C.4或-4 D.2或-2
2.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( )
A. B.1
C. D.
3.(新课标全国卷Ⅰ)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上的一点,若|PF|=4,则△POF的面积为( )
A.2 B.2
C.2 D.4
4.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|等于( )
A.4 B.8
C.8 D.16
5.顶点在原点,焦点在x轴上且通径长为6的抛物线方程是____________________.
6.对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;
②焦点在x轴上;
③抛物线上横坐标为1的点到焦点的距离等于6;
④抛物线的通径的长为5;
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
则使抛物线方程为y2=10x的必要条件是________(要求填写合适条件的序号).
7.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,求抛物线方程及|OM|的值.