解析:过A,B分别作准线l的垂线AD,BC,垂足分别为D,C,M是线段AB的中点,MN垂直准线l于N,由于MN是梯形ABCD的中位线.
所以MN=.
由抛物线的定义知AD+BC=AF+BF=3,所以MN=,又由于准线l的方程为x=-,所以线段AB中点到y轴的距离为-=,故填.
答案:
平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,求动点P的轨迹方程.
解:法一:设P(x,y),则有=|x|+1,两边平方并化简得y2=2x+2|x|.
∴y2=
故点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).
法二:由题意,动点P到定点F(1,0)的距离比到y轴的距离大1.由于F(1,0)到y轴的距离为1,故当x<0时,直线y=0上的点适合条件;当x≥0时,原命题等价于点P到F(1,0)与到直线x=-1的距离相等,故点P在以F为焦点,x=-1为准线的抛物线上,其轨迹方程为y2=4x.
故所求动点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).
(1)抛物线的顶点为坐标原点,对称轴为坐标轴,又知抛物线经过点P(4,2),求抛物线的方程;
(2)已知抛物线C:x2=2py(p>0)上一点A(m,4)到其焦点的距离为,求p与m的值.
解:(1)∵抛物线的顶点为坐标原点,对称轴为坐标轴,
∴抛物线的方程为标准方程.
又∵点P(4,2)在第一象限,
∴抛物线的方程设为y2=2px,x2=2py(p>0).
当抛物线为y2=2px时,则有22=2p×4,故2p=1,y2=x;
当抛物线为x2=2py时,则有42=2p×2,故2p=8,x2=8y.
综上,所求的抛物线的方程为y2=x或x2=8y.
(2)由抛物线方程得其准线方程y=-,根据抛物线定义,点A(m,4)到焦点的距离等于它到准线的距离,即4+=,解得p=;∴抛物线方程为:x2=y,将A(m,4)代入抛物线方程,解得m=±2.
[能力提升]
在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点.其中点A在x轴上方,若直线l的倾斜角为60°,则△OAF的面积为________.