3.1.4 空间向量的直角坐标运算
课时过关·能力提升
1.已知点B是点A(3,7,-4)在xOz平面上的射影,则|(OB) ⃗|2=( )
A.(9,0,16) B.25
C.5 D.13
解析:由题意,得B(3,0,-4),
∴|(OB) ⃗|2=32+02+(-4)2=25.
答案:B
2.已知A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|(CM) ⃗|=( )
A.√53/4 B.53/2 C.√53/2 D.√13/2
解析:由题意,得M(2"," 3/2 "," 3),则(CM) ⃗=(2"," 1/2 "," 3),
所以|(CM) ⃗|=√(2^2+(1/2)^2+3^2 )=√53/2.
答案:C
3.已知a=(2,-1,2),b=(2,2,1),则以a,b为邻边的平行四边形的面积为( )
A.√65 B.√65/2
C.4 D.8
解析:∵|a|=√(2^2+"(-" 1")" ^2+2^2 )=3,|b|=3,
∴S=|a||b|sin=√65.
答案:A
4.已知a=(cos α,1,sin α),b=(sin α,1,cos α),则a+b与a-b的夹角是( )
A.90° B.60° C.30° D.0°
解析:(a+b)·(a-b)=a2-b2=cos2α+12+sin2α-(sin2α+12+cos2α)=0,故a+b与a-b的夹角是90°.